Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256248

RESUMO

The cationic platinum(II) organometallic complex [Pt(terpy)Me]+ (terpy = 2,2':6',2″-terpyridine) at mild acidic pH interacts with poly(L-glutamic acid) (L-PGA) in its α-helix conformation, affording chiral supramolecular adducts. Their kinetics of formation have been investigated in detail as a function of the concentrations of both reagents and changing pH, ionic strength, the length of the polymeric scaffold and temperature. After a very fast early stage, the kinetic traces have been analyzed as three consecutive steps, suggesting a mechanism based on the electrostatic fast formation of a not-organized aggregate that subsequently evolves through different rearrangements to form the eventual supramolecular adduct. A model for this species has been proposed based on (i) the attractive electrostatic interaction of the cationic platinum(II) complexes and the polyelectrolyte and (ii) the π-stacking interactions acting among the [Pt(terpy)Me]+ units.


Assuntos
Ácido Glutâmico , Platina , Poli A , Cátions , Cinética
2.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257385

RESUMO

The interaction of a series of metal derivatives of 5, 10, 15, 20-tetrakis(4-sulfonato-phenyl)porphyrin (MTPPS4, M = Cu(II), Pt(II), Ni(II), Zn(II) and Co(II)), including the metal free porphyrin (TPPS4), with the aromatic amino acids L-tryptophan (L-Trp), L-and D-phenylalanine (L-and D-Phe) and L-histidine (L-His) have been investigated through UV/Vis spectroscopy. The amino acid L-serine (L-Ser) has been included as reference compound. The spectroscopic changes induced by adding the amino acids have been exploited to evaluate the extent of interaction between the molecular components in the supramolecular adducts. The binding constants have been estimated for most of the investigated systems, assuming a simple 1:1 equilibrium. The bathochromic shifts of the B-bands, the extent of hypochromicity and the binding constants have been analyzed through two chemical descriptors. All the data point to the important role played by the steric hindrance introduced by axial ligands coordinated to the metal ions and to the degree of hydrophobicity and size of the aromatic moiety in the amino acids.

3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139200

RESUMO

The self-assembly of porphyrins onto polyelectrolytes could lead to interesting changes in their reactivity with respect to the bulk solution. Here, we investigated the kinetics of Zn2+ incorporation into tetra-cationic water-soluble 5,10,15,20-tetrakis-(N-methylpyridinium-4-yl)porphyrin (TMpyP(4)) in the presence of poly(L-glutamic acid) (PGA) in a pH range from 4 to 6.5. Under these conditions, the porphyrin electrostatically interacted with the polymer, which gradually switched from an α-helical to a random coil structure. The profile of the logarithm of the observed rate constant (kobs) versus the pH was sigmoidal with an inflection point close to the pH of the conformation transition for PGA. At a pH of 5.4, when PGA was in its highly charged random coil conformation, an almost 1000-fold increase in the reaction rates was observed. An increase in the ionic strength of the bulk solution led to a decrease in the metal insertion rates. The role of the charged matrix was explained in terms of its ability to assemble both reagents in proximity, in agreement with the theory of counter-ion condensation around polyelectrolytes in an aqueous solution.


Assuntos
Ácido Glutâmico , Porfirinas , Zinco , Polieletrólitos , Porfirinas/química , Cátions , Poli A/química , Catálise
4.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37947678

RESUMO

The highly distorted water-soluble 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (Br8TPPS44-) is readily protonated under acidic pH, forming the diacid H2Br8TPPS42- and subsequently the zwitterionic H4Br8TPPS4, which eventually evolves into J-aggregates. These latter species exhibit a relevant bathochromic shift with respect to the monomer with a quite sharp band due to motional narrowing. The depolarization ratio measured in resonant light scattering spectra allows estimating a tilt angle of ~20° of the porphyrins in the J-aggregate. The kinetic parameters are obtained by applying a model based on the initial slow nucleation step, leading to a nucleus containing m monomers, followed by fast autocatalytic growth. The kc values for this latter step increase on decreasing the acid concentration and on increasing the porphyrin concentration, with a strong power-law dependence. No spontaneous symmetry breaking or transfer of chirality from chiral inducers is observed. Both Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) point to the presence, in both the solid and solution phases, of globular-shaped aggregates with sizes close to 130 nm. Density functional theory (DFT) calculations performed on simplified models show that (i) upon protonation, the saddled conformation of the porphyrin ring is slightly altered, and a further rotation of the aryl rings occurs, and (ii) the diacid species is more stable than the parent unprotonated porphyrin. Time-dependent DFT analysis allows comparing the UV/Vis spectra for the two species, showing a consistent red shift upon protonation, even if larger than the experimental one. The simulated Raman spectrum agrees with the experimental spectrum acquired on solid samples.

5.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985465

RESUMO

Developing new broad-spectrum antimicrobial strategies, as alternatives to antibiotics and being able to efficiently inactivate pathogens without inducing resistance, is one of the main objectives in public health. Antimicrobial photodynamic therapy (aPDT), based on the light-induced production of reactive oxygen species from photosensitizers (PS), is attracting growing interest in the context of infection treatment, also including biofilm destruction. Due to the limited photostability of free PS, delivery systems are increasingly needed in order to decrease PS photodegradation, thus improving the therapeutic efficacy, as well as to reduce collateral effects on unaffected tissues. In this study, we propose a photosensitizing nanosystem based on the cationic porphyrin 5,10,15,20-tetrakis (N-methyl- 4-pyridyl)-21H,23H-porphyrin (TMPyP), complexed with the commerical sulfobutylether-beta-cyclodextrin (CAPTISOL®), at a 1:50 molar ratio (CAPTISOL®/TMPyP)50_1. Nanoassemblies based on (CAPTISOL®/TMPyP)50_1 with photodynamic features exhibited photo-antimicrobial activity against Gram-negative and Gram-positive bacteria. Moreover, results from P. aeruginosa reveal that CAPTISOL® alone inhibits pyocyanin (PYO) production, also affecting bacterial biofilm formation. Finally, we obtained a synergistic effect of inhibition and destruction of P. aeruginosa biofilm by using the combination of CAPTISOL® and TMPyP.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Anti-Infecciosos/farmacologia , Porfirinas/farmacologia , Biofilmes
6.
Int J Pharm ; 637: 122883, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36972777

RESUMO

Within of the increasing requirement of alternative approaches to fight emerging infections, nano-photosensitisers (nanoPS) are currently designed with the aim to optimize the antimicrobial photodynamic (aPDT) efficacy. The utilize of less expensive nanocarriers prepared by simple and eco-friendly methodologies and commercial photosensitisers are highly desiderable. In this direction, here we propose a novel nanoassembly composed of water soluble anionic polyester ß-CD nanosponges (ß-CD-PYRO hereafter named ßNS) and the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4- yl)porphine (TMPyP). Nanoassemblies were prepared in ultrapure water by mixing PS and ßNS, by exploiting their mutual electrostatic interaction, and characterized by various spectroscopic techniques such as UV/Vis, Steady-State and Time Resolved Fluorescence, Dynamic Light Scattering and ζ-potential. NanoPS produce appreciable amount of single oxygen similar to free porphyrin and a prolonged stability after 6 days of incubations in physiological conditions and following photoirradiation. Antimicrobial photodynamic action against fatal hospital-acquired infections such as P. aeruginosa and S. aureus was investigated by pointing out the ability of cationic porphyrin loaded- CD nanosponges to photo-kill bacterial cells at prolonged time of incubation and following irradiation (MBC99 = 3.75 µM, light dose = 54.82 J/cm2).


Assuntos
Anti-Infecciosos , Ciclodextrinas , Fotoquimioterapia , Porfirinas , Ciclodextrinas/química , Staphylococcus aureus , Porfirinas/farmacologia , Porfirinas/química , Água/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
7.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675210

RESUMO

The self-assembling kinetics of the 5,10,15,20-tetrakis(4-sulfonato-phenyl)porphyrin (TPPS4) into nano-tubular J-aggregates under strong acidic condition and in the presence of amino acids as templating chiral reagents have been investigated through UV/Vis spectroscopy. The ability of the chiral species to transfer its chiral information to the final J-aggregate has been measured through circular dichroism (CD) spectroscopy and compared to the spontaneous symmetry breaking process usually observed in these nano-aggregates. Under the experimental conditions here selected, including mixing protocol, we have observed a large difference in the observed aggregation rates for the various amino acids, those with a positively charged side group being the most effective. On the contrary, these species are less efficient in transferring their chirality, exhibiting a quite low or modest enhancement in the observed dissymmetry g-factors. On the other side, hydrophobic and some hydrophilic amino acids are revealed to be very active in inducing chirality with a discrete increase of intensity of the detected CD bands with respect to the spontaneous symmetry breaking.


Assuntos
Porfirinas , Porfirinas/química , Aminoácidos , Estereoisomerismo , Dicroísmo Circular , Espectrofotometria Ultravioleta
8.
Pharmaceutics ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452254

RESUMO

Levofloxacin (LVF) is an antibacterial drug approved for the treatment of ocular infections. However, due to the low ocular bioavailability, high doses are needed, causing bacterial resistance. Polymeric nanospheres (NPs) loading antibiotic drugs represent the most promising approach to eradicate ocular infections and to treat pathogen resistance. In this study, we have developed chitosan NPs based on sulfobutyl-ether-ß-cyclodextrin (CH/SBE-ß-CD NPs) for ocular delivery of LVF. CH/SBE-ß-CD NPs loading LVF were characterized in terms of encapsulation parameters, morphology, and sizes, in comparison to NPs produced without the macrocycle. Nuclear magnetic resonance and UV-vis spectroscopy studies demonstrated that SBE-ß-CD is able to complex LVF and to influence encapsulation parameters of NPs, producing high encapsulation efficiency and LVF loading. The NPs were homogenous in size, with a hydrodynamic radius between 80 and 170 nm and positive zeta potential (ζ) values. This surface property could promote the interaction of NPs with the negatively charged ocular tissue, increasing their residence time and, consequently, LVF efficacy. In vitro, antibacterial activity against Gram-positive and Gram-negative bacteria showed a double higher activity of CH/SBE-ß-CD NPs loading LVF compared to the free drug, suggesting that chitosan NPs based on SBE-ß-CD could be a useful system for the treatment of ocular infections.

9.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466834

RESUMO

The hierarchical self-assembling kinetics of the porphyrin 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS44-) into J-aggregates at high ionic strength under acidic conditions and eventually in the presence of an added chiral templating agent (tartrate) were investigated through UV/Vis spectroscopy, resonance light scattering, and circular dichroism (CD). The effect of changing the mixing order of the various components in the solution on the kinetic parameters and the expression of chirality on the final J-aggregates was evaluated. In this latter case, only when the chiral tartrate anion is premixed with the porphyrin, the resulting nano-architectures exhibit CD spectra that reflect the handedness of the chiral inducer. We discuss a general mechanistic scheme, with the involvement of ion pairs or dimers that offer an alternative pathway to the aggregation process.


Assuntos
Modelos Químicos , Polímeros/química , Porfirinas/química , Água/química , Dicroísmo Circular , Cinética , Solubilidade , Espectrofotometria , Estereoisomerismo , Tartaratos/química
10.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375184

RESUMO

Under moderate acidic conditions, the cationic (+3) complexes ions tris(1,10-phenanthroline)cobalt(III), [Co(phen)3]3+, and hexamminecobalt(III), [Co(NH3)6]3+, efficiently promote the self-assembling process of the diacid 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4) into J-aggregates. The growth kinetics have been analyzed according to a well-established autocatalytic model, in which the rate determining step is the initial formation of a nucleus containing m porphyrin units (in the range 2-3), followed by a stage whose rate constant kc evolves as a power of time. The observed catalytic rate constants and the extent of J-aggregation increase on increasing the metal complex concentration, with the phen complex being the less active. The UV/Vis extinction spectra display quite broad envelops at the J-band, especially for the amino-complex, suggesting that electronic dipolar coupling between chromophores is operative in these species. The occurrence of spontaneous symmetry breaking has been revealed by circular dichroism and the measured dissymmetry g-factor decreases on increasing the aggregation rates. The role of these metal complexes on the growth and stabilization of porphyrin nano-assemblies is discussed in terms of the different degree of hydrophilicity and hydrogen bonding ability of the ligands present in the coordination sphere around the metal center.


Assuntos
Cátions/química , Cobalto/química , Complexos de Coordenação/química , Porfirinas/química , Dicroísmo Circular , Cinética , Modelos Químicos , Solubilidade , Espectrofotometria , Água/química
11.
Molecules ; 25(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291399

RESUMO

Under mild acidic conditions, various metal derivatives of tetrakis(4-N-methylpyridinium)porphyrin (gold(III), AuT4; cobalt(III), CoT4; manganese(III), MnT4 and zinc(II), ZnT4) catalytically promote the supramolecular assembling process of the diacid 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4) into J-aggregates. The aggregation kinetics have been treated according to a well-established model that involves the initial formation of a critical nucleus containing m porphyrin units, followed by autocatalytic growth, in which the rate evolves as a power of time. An analysis of the extinction time traces allows to obtain the rate constants for the auto-catalyzed pathway, kc, and the number of porphyrins involved in the initial seeding. The aggregation kinetics have been investigated at fixed H2TPPS4 concentration as a function of the added metal derivatives MT4. The derived rate constants, kc, obey a rate law that is first order in [MT4] and depend on the specific nature of the catalyst in the order AuT4 > CoT4 > MnT4 > ZnT4. Both resonance light scattering (RLS) intensity and extinction in the aggregated samples increase on increasing [MT4]. With the exception of AuT4, the final aggregated samples obtained at the highest catalyst concentration exhibit a negative Cotton effect in the J-band region, evidencing the occurrence of spontaneous symmetry breaking. The role of the nature of the metal derivative in terms of overall charge and presence of axial groups will be discussed.


Assuntos
Cátions/química , Metaloporfirinas/química , Porfirinas/química , Catálise/efeitos dos fármacos , Dicroísmo Circular/métodos , Cinética , Luz , Espectrofotometria Ultravioleta/métodos , Água/química
12.
Nutrients ; 12(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167391

RESUMO

BACKGROUND: Almond kernels contain phytochemicals with positive health effects in relation to heart disease, diabetes and obesity. Several studies have previously highlighted that almond cell wall encapsulation during digestion and particle size are factors associated with these benefits. In the present study, we have characterized almond oleosomes, natural oil droplets abundant in plants, and we have investigated their integrity during simulated gastrointestinal digestion. METHODS: Oleosomes were visualized on the almond seed surface by imaging mass spectrometry analysis, and then characterized in terms of droplet size distribution by dynamic light scattering and protein profile by liquid chromatography high-resolution tandem mass spectrometry analysis. RESULTS: The almond oleosomes' distribution remained monomodal after in vitro mastication, whereas gastric and duodenal digestion led to a bimodal distribution, albeit characterized mainly by a prevalent population with a droplet size decrease related to a rearrangement of the protein profile. Oleosins, structural proteins found in plant oil bodies, persisted unchanged during simulated mastication, with the appearance of new prunin isoforms after gastric and duodenal digestion. CONCLUSIONS: The rearrangement of the protein profile could limit lipid bioaccessibility. The data improve our understanding of the behavior of almond lipids during gastrointestinal digestion, and may have implications for energy intake and satiety imparted by almonds.


Assuntos
Digestão , Gotículas Lipídicas/química , Prunus dulcis/química , Duodeno/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Hidrodinâmica , Mastigação , Tamanho da Partícula , Proteínas de Plantas/análise , Sementes/química
13.
Nanomaterials (Basel) ; 10(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872542

RESUMO

Injectable nanobioplatforms capable of locally fighting the inflammation in osteoarticular diseases, by reducing the number of administrations and prolonging the therapeutic effect is highly challenging. -Cyclodextrin cationic polymers are promising cartilage-penetrating candidates by intra-articular injection due to the high biocompatibility and ability to entrap multiple therapeutic and diagnostic agents, thus monitoring and mitigating inflammation. In this study, nanoassemblies based on poly--amino-cyclodextrin (PolyCD) loaded with the non-steroidal anti-inflammatory drug diclofenac (DCF) and linked by supramolecular interactions with a fluorescent probe (adamantanyl-Rhodamine conjugate, Ada-Rhod) were developed to manage inflammation in osteoarticular diseases. PolyCD@Ada-Rhod/DCF supramolecular nanoassemblies were characterized by complementary spectroscopic techniques including UV-Vis, steady-state and time-resolved fluorescence, DLS and ζ-potential measurement. Stability and DCF release kinetics were investigated in medium mimicking the physiological conditions to ensure control over time and efficacy. Biological experiments evidenced the efficient cellular internalization of PolyCD@Ada-Rhod/DCF (within two hours) without significant cytotoxicity in primary human bone marrow-derived mesenchymal stromal cells (hMSCs). Finally, polyCD@Ada-Rhod/DCF significantly suppressed IL-1 production in hMSCs, revealing the anti-inflammatory properties of these nanoassemblies. With these premises, this study might open novel routes to exploit original CD-based nanobiomaterials for the treatment of osteoarticular diseases.

14.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664456

RESUMO

The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.


Assuntos
Ciclodextrinas/metabolismo , Doxorrubicina/metabolismo , Expressão Gênica/efeitos dos fármacos , Grafite/metabolismo , Nanoestruturas/administração & dosagem , Neoplasias/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ciclodextrinas/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , Camundongos , Neoplasias/tratamento farmacológico
15.
Int J Pharm ; 585: 119487, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32492506

RESUMO

Nowadays, novel less-expensive nanoformulations for in situ-controlled and safe delivery of photosensitisers (PSs) against opportunistic pathogens in body-infections areas need to be developed. Antimicrobial photodynamic therapy (aPDT) is a promising approach to treat bacterial infections that are recalcitrant to antibiotics. In this paper, we propose the design and characterization of a novel nanophototherapeutic based on the trade cyclodextrin CAPTISOL® (sulfobutylether-beta-cyclodextrin, SBE-ßCD) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphine tetrakis(p-toluenesulfonate) (TMPyP) to fabricate efficient biocompatible systems for aPDT. Spherical nanoassemblies of about 360 nm based on CAPTISOL®/TMPyP supramolecular complexes with 1:1 stoichiometry and apparent equilibrium binding constant (Kb â‰… 1.32 × 105 M-1) were prepared with entrapment efficiency of â‰… 100% by simple mixing in aqueous media and freeze-drying. These systems have been characterized by complementary spectroscopy and microscopy techniques. Time resolved fluorescence pointed out the strong interaction of porphyrin monomer within nanoassemblies (τ2 â‰… 11 ns with an amount of ca 90%) and scarce self-aggregation of porphyrins have been observed. Singlet oxygen comparative determination (Ï•Δ CAPTISOL®/TMPyP = 0.58) assessed their photodynamic potential. Release and photostability studies have been carried out under physiological conditions pointing out the role of CAPTISOL® to sustain porphyrin release for more than 2 weeks and to protect PS from photodegradation. Finally, photoantimicrobial activity of nanoassemblies vs free porphyrin have been investigated against Gram-negative P. aeruginosa, E. coli and Gram-positive S. aureus. The proposed nanosystems were able to photokill both Gram-positive and -negative bacterial cells similarly to TMPyP at MBC90 = 6 µM of TMPyP and at 42 J/cm2 light dose. However, with respect to the less selective free TMPyP in biological sites, nanoassemblies exhibit sustained release properties and a higher photostability thus optimizing the PDT effect at the site of action. These results can open routes for in vivo translational studies on nano(photo)drugs and nanotheranostics based on less expensive formulations of CD and PS.


Assuntos
Anti-Infecciosos/síntese química , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , beta-Ciclodextrinas/síntese química , Anti-Infecciosos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Excipientes/administração & dosagem , Excipientes/síntese química , Luz/efeitos adversos , Nanopartículas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , beta-Ciclodextrinas/administração & dosagem
16.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503280

RESUMO

Under acidic conditions and at high ionic strength, the zinc cation is removed from its metal complex with 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) thus leading to the diacid free porphyrin, that subsequently self-organize into J-aggregates. The kinetics of the demetallation step and the successive supramolecular assembly formation have been investigated as a function of pH and ionic strength (controlled by adding ZnSO4). The demetallation kinetics obey to a rate law that is first order in [ZnTPPS4] and second order in [H+], according to literature, with k2 = 5.5 ± 0.4 M-2 s-1 at 298 K (IS = 0.6 M, ZnSO4). The aggregation process has been modeled according to an autocatalytic growth, where after the formation of a starting seed containing m porphyrin units, the rate evolves as a power of time. A complete analysis of the extinction time traces at various wavelengths allows extraction of the relevant kinetic parameters, showing that a trimer or tetramer should be involved in the rate-determining step of the aggregation. The extinction spectra of the J-aggregates evidence quite broad bands, suggesting an electronic coupling mechanism different to the usual Frenkel exciton coupling. Resonance light scattering intensity in the aggregated samples increases with increasing both [H+] and [ZnSO4]. Symmetry breaking occurs in these samples and the J-aggregates show circular dichroism spectra with unusual bands. The asymmetry g-factor decreases in its absolute value with increasing the catalytic rate kc, nulling and eventually switching the Cotton effect from negative to positive. Some inferences on the role exerted by zinc cations on the kinetics and structural features of these nanostructures have been discussed.


Assuntos
Porfirinas/química , Zinco/química , Cátions , Dicroísmo Circular , Elétrons , Concentração de Íons de Hidrogênio , Íons , Cinética , Luz , Sais , Espalhamento de Radiação , Solubilidade , Espectrofotometria Ultravioleta , Estereoisomerismo , Temperatura
17.
Nanomaterials (Basel) ; 10(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252418

RESUMO

The ability of multiwalled carbon nanotubes (MWCNTs) covalently functionalized with polyamine chains of different length (ethylenediamine, EDA and tetraethylenepentamine, EPA) to induce the J-aggregation of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was investigated in different experimental conditions. Under mild acidic conditions, protonated amino groups allow for the assembly by electrostatic interaction with the diacid form of TPPS, leading to hybrid nanomaterials. The presence of only one pendant amino group for a chain in EDA does not lead to any aggregation, whereas EPA (with four amine groups for chain) is effective in inducing J-aggregation using different mixing protocols. These nanohybrids have been characterized through UV/Vis extinction, fluorescence emission, resonance light scattering, and circular dichroism spectroscopy. Their morphology and chemical composition have been elucidated through transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). TEM and STEM analysis evidence single or bundles of MWCNTs in contact with TPPS J-aggregates nanotubes. The nanohybrids are quite stable for days, even in aqueous solutions mimicking physiological medium (NaCl 0.15 M). This property, together with their peculiar optical features in the therapeutic window of visible spectrum, make them potentially useful for biomedical applications.

18.
ACS Appl Mater Interfaces ; 11(49): 46101-46111, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31729219

RESUMO

The theranostic ability of a new fluorescently labeled cationic cyclodextrin-graphene nanoplatform (GCD@Ada-Rhod) was investigated by studying its intracellular trafficking and its ability to deliver plasmid DNA and microRNA. The nanoplatform was synthesized by both covalent and supramolecular approaches, and its chemical structure, morphology, and colloidal behavior were investigated by TGA, TEM, spectroscopic analysis such as UV-vis, fluorescence emission, DLS, and ζ-potential measurements. The cellular internalization of GCD@Ada-Rhod and its perinuclear localization were assessed by FLIM, Raman imaging, and fluorescence microscopy. Biological experiments with pCMS-EGFP and miRNA-15a evidenced the excellent capability of GCD@Ada-Rhod to deliver both pDNA and microRNA without significant cytotoxicity. The biological results evidenced an unforeseen caveolae-mediated endocytosis internalization pathway (generally expected for particles <200 nm), despite the fact that the GCD@Ada-Rhod size is about 400 nm (by DLS and TEM data). We supposed that the internalization pathway was driven by physical-chemical features of GCD@Ada-Rhod, and the caveolae-mediated uptake enhanced the transfection efficiency, avoiding the lysosomal acid degradation. The cellular effects of internalized miRNA-15a on the oncogene protein BCL-2 were investigated at two different concentrations (N/P = 10 and 5), and a reduction of the BCL-2 level was detected at a low concentration (i.e., N/P = 10). miRNA-15a is considered an ideal cancer therapy molecule due to its activity on multiple transcription factors, and the elucidation of the correlation between the concentration of delivered miRNA-15a and the down-/up-regulation of the BCL-2 level, documented for the first time in this work, could be an important contribution to guide its clinical application.


Assuntos
Transporte Biológico , Técnicas de Transferência de Genes , MicroRNAs/farmacologia , Plasmídeos/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Grafite/química , Humanos , Lisossomos/química , Lisossomos/genética , MicroRNAs/química , MicroRNAs/genética , Plasmídeos/química , Plasmídeos/genética , Transfecção , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
19.
Biomacromolecules ; 20(7): 2530-2544, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31241900

RESUMO

Nowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic ß-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = -51 mV). Morphology of SAP was investigated by atomic force microscopy and microphotoluminescence, indicating the presence of highly emissive near-spherical assemblies of about 280 nm in size. Complementary spectroscopic techniques such as ROESY-NMR, UV/vis and steady-state fluorescence revealed that the folic acid protrudes out of amphiphilic CD rims, prone for recognition with FR-α. Pheo was strongly loaded in the nanoassembly mostly in monomeric form, thus generating singlet oxygen (1O2) and consequentely showing phototherapeutic action. SAP remained stable until 2 weeks in aqueous solutions. Stability studies in biologically relevant media pointed out the ability of SAP to interact with serum proteins by means of the oligoethylenglycole fringe, without destabilization. Release experiments demonstrated the sustained release of Pheo from SAP in environments mimiking physiological conditions (∼20% within 1 week), plausibly suggesting low Pheo leaking and high integrity of the assembly within 24 h, time spent on average to reach the target sites. Cellular uptake of SAP was confirmed by confocal microscopy, pointing out that SAP was internalized into the tumoral cells expressing FR-α more efficiently than SP. SAP showed improved phototoxicity in human breast MCF-7 cancer cells FR-α(+) (IC50 = 270 nM) with respect to human prostate carcinoma PC3 cells (IC50 = 700 nM) that express a low level of that receptor (FR-α(-)). Finally, an improved phototoxicity in FR-α(+) MCF-7 cells (IC50 = 270 nM) was assessed after treatment with SAP vs SP (IC50 = 600 nM) which was designed without Ada-FA as a targeting unit.


Assuntos
Ciclodextrinas , Sistemas de Liberação de Medicamentos , Ácido Fólico , Neoplasias , Fotoquimioterapia , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3
20.
BMC Complement Altern Med ; 19(1): 6, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612544

RESUMO

BACKGROUND: Candida sp. represent the most common cause of fungal infections worldwide. In the present work, we have evaluated the activity of an essential oil extracted from pistachio hulls against a number of standard and clinical strains of Candida sp. METHODS: C. albicans ATCC 64550, C. parapsilosis ATCC 22019, 4 clinical strains of C. albicans, 3 clinical strains of C. parapsilosis and 3 clinical strains of C. glabrata were used. All clinical isolates were identified by species-specific PCR-based methods. Susceptibility studies were performed using pistachio hull essential oil alone or in combination with antifungal compounds. The interactions between pistachio hull essential oil and selected antifungal compounds were also evaluated using the checkerboard method and the mechanisms of interaction investigated by droplet size distribution. RESULTS: Pistachio hull essential oil was fungicidal at the concentrations between 2.50 and 5.0 mg/ml. D-limonene and 3-Carene were the components with major activity. An antagonistic effect was observed with all combinations tested. CONCLUSION: The antifungal activity of pistachio hull essential oil could be used to help control resistance in Candida species. More studies need to be performed to elucidate the mechanisms responsible for the activity of pistachio hull essential oil.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Óleos Voláteis/farmacologia , Pistacia/química , Óleos de Plantas/farmacologia , Candidíase/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...